国科网

2025-06-09 15:44:51  星期一
立足国科融媒,服务先进科技
YOLO-NAS:最高效的目标检测算法之一

点赞

0
发布时间:2023年11月14日 浏览量:144次 所属栏目:人工智能 发布者:田佳恬

YOLO-NAS目标检测

介绍

YOLO(You Only Look Once)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法首次在2016年的论文《You Only Look Once:统一的实时目标检测》被提出。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中最受欢迎的算法之一。它在各种目标检测基准测试中实现了最先进的性能。

YOLO架构

就在2023年5月的第一周,YOLO-NAS模型被引入到机器学习领域,它拥有无与伦比的精度和速度,超越了其他模型如YOLOv7和YOLOv8。

YOLO-NAS与其他模型对比

YOLO-NAS模型是在COCO和Objects365等数据集上进行预训练的,这使得它适用于现实世界的应用。它目前可以在Deci的SuperGradients上使用,这是一个基于PyTorch的库,包含近40个预训练模型,用于执行不同的计算机视觉任务,如分类、检测、分割等。

那么,让我们开始安装SuperGradients库,以便开始使用YOLO-NAS吧!


# Installing supergradients lib
!pip install super-gradients==3.1.0

分享说明:转发分享请注明出处。

    相关图讯
    网站简介  |   联系我们  |   广告服务  |   监督电话
    本网站由国科网运营维护 国科网讯(北京)技术有限公司版权所有  咨询电话:010-88516927
    地址:北京市海淀区阜石路甲69号院1号楼1层一单元114
    ICP备案号:京ICP备15066964号-8   违法和不良信息举报电话:010-67196565
    12300电信用户申诉受理中心   网络违法犯罪举报网站   中国互联网举报中心   12321网络不良与垃圾信息举报中心   12318全国文化市场举报网站
    代理域名注册服务机构:阿里巴巴云计算(北京)有限公司