YOLO-NAS目标检测
介绍
YOLO(You Only Look Once)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法首次在2016年的论文《You Only Look Once:统一的实时目标检测》被提出。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中最受欢迎的算法之一。它在各种目标检测基准测试中实现了最先进的性能。
YOLO架构
就在2023年5月的第一周,YOLO-NAS模型被引入到机器学习领域,它拥有无与伦比的精度和速度,超越了其他模型如YOLOv7和YOLOv8。
YOLO-NAS与其他模型对比
YOLO-NAS模型是在COCO和Objects365等数据集上进行预训练的,这使得它适用于现实世界的应用。它目前可以在Deci的SuperGradients上使用,这是一个基于PyTorch的库,包含近40个预训练模型,用于执行不同的计算机视觉任务,如分类、检测、分割等。
那么,让我们开始安装SuperGradients库,以便开始使用YOLO-NAS吧!
# Installing supergradients lib
!pip install super-gradients==3.1.0
分享说明:转发分享请注明出处。